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Introduction Behavior Neurophysiology

Multiple systems interact to support learning and decision making. Two One subject completed 5 sessions with low cognitive demand (WM load = 0) and 4 OFC is centrally positioned within a neural network linking
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reinforcement learning (RL), that capture deliberative and automatic peak choice accuracy between the two conditions, despite completing the more OFdC accr:]ezs to state I‘""SSOC'a“O”S 3n_cocr:l]ed In the hippocampus

control of behavior, respectively. How the brain arbitrates between challenging WM task with mean 72% accuracy (chance = 50%). and cached action values computed In the striatum.

these two systems, given a set of task demands, remains unclear. | o Given its access to inforation required for both MB and MF RL,
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Noninvasive neuroimaging methods lack the spatiotemporal 4UVW  WULDOV 4UVW  WULDOV HIDPSOH VHVVLRQ 0 ORDG hhcesses, producing value estimates that ultimately drive

resolution required to address this question. Thus, it is critical to adapt 1 1 behavior.

tasks which disentagle the roles of mutliple RL processes for use In
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Standara NHP NHPs can learn reward contingencies in a challenging dual-task setting.
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We trained NHPs to perform a dual task where they learned the values increases, executive resource 3 < | o |
of two picture sets while simultaneously completing a spatial working availability decreases, boosting g higher demand We trained a NHP to perform a sophisticated RL task with
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