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Multiple systems interact to support learning and decision making. Two 
such systems are model-based (MB) and model-free (MF) 
reinforcement learning (RL), that capture deliberative and automatic 
control of behavior, respectively. How the brain arbitrates between 
these two systems, given a set of task demands, remains unclear.

Noninvasive neuroimaging methods lack the spatiotemporal 
resolution required to address this question. Thus, it is critical to adapt 
tasks which disentagle the roles of mutliple RL processes for use in 
nonhuman primates (NHPs).

Conclusion
We trained a NHP to perform a sophisticated RL task with 
parallels to human behavior. Preliminary results suggest 
that RL strategy shifts towards MF RL as cognitive 
demand increases, consistent with an accuracy-demand 
�W�U�D�G�H�R�•���E�H�W�Z�H�H�Q���0�%���D�Q�G���0�)���5�/����

This paradigm will enable us to link algorithmic models of 
RL to the neuronal circuits that implement them.
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We adapted the “two-step task” (Daw et al. 2011) to reduce stochasticity 
and increase action value contrast.
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MB ratio   =  
p (repeat | common)

p (repeat | rare)

MF ratio   = 
p (repeat | rewarded)

p (repeat | unrewarded)

We derived two values for each trial bin:

OFC is centrally positioned within a neural network linking 
hippocampus (HPC), prefrontal cortex, and striatum, granting 
OFC access to state associations encoded in the hippocampus 
and cached action values computed in the striatum.

Given its access to inforation required for both MB and MF RL, 
we propose that OFC integrates signals from multiple RL 
processes, producing value estimates that ultimately drive 
behavior. 

We will simultaneously record from neuronal populations in 
OFC, HPC, and striatum using multisite linear probes (Plexon). 

We aim to study:

- the role of OFC in MF and MB RL computations.

- OFC-HPC interactions during RL
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To perform optimally, subjects must learn the structure of the task (MB RL) while 
remaining sensitive to reward outcomes (MF RL). To quantify �K�R�Z���0�%�����U�H�O�D�W�L�Y�H���W�R���0�)����
control evolves over the course of training���� �Z�H���H�Y�D�O�X�D�W�H�G���W�K�H���L�Q�5�X�H�Q�F�H���R�I�� �S�U�H�Y�L�R�X�V��
trial outcomes on the likelihood of repeating a previously chosen action.

One subject completed 5 sessions with low cognitive demand (WM load = 0) and 4 
�V�H�V�V�L�R�Q�V���Z�L�W�K���K�L�J�K���G�H�P�D�Q�G�����:�0���O�R�D�G��� �����������7�K�H�U�H���Z�D�V���Q�R���G�L�•�H�U�H�Q�F�H���L�Q���O�H�D�U�Q�L�Q�J���U�D�W�H���R�U��
peak choice accuracy between the two conditions, despite completing the more 
challenging WM task with mean 72% accuracy (chance = 50%). 

When executive resources are 
available, MB processes drive 
behavior. As cognitive load 
increases, executive resource 
availability decreases, boosting 
MF control.

Hypothesis: Pure MB RL:
reward x transition
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behavior towards MF control. Future work 
will increase the WM load further to 
examine whether we can increase the size 
�R�I���W�K�L�V���H�•�H�F�W����

We trained NHPs to perform a dual task where they learned the values 
of two picture sets while simultaneously completing a spatial working 
memory task. The dual task structure allowed us to control cognitive 
demand, manipulating how strongly subjects relied on MF or MB RL.
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