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Introduction Behavior Neurophysiology

Multiple systems interact to support learning and decision making. Two One subject completed 5 sessions with low cognitive demand (WM load = 0) and 4 OFC is centrally positioned within a neural network linking
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reinforcement learning (RL), that capture deliberative and automatic peak choice accuracy between the two conditions, despite completing the more OFdC accr:]ezs to state I‘""SSOC'a“O”S 3n_cocr:l]ed In the hippocampus

control of behavior, respectively. How the brain arbitrates between challenging WM task with mean 72% accuracy (chance = 50%). and cached action values computed In the striatum.

these two systems, given a set of task demands, remains unclear. | o Given its access to inforation required for both MB and MF RL,
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Noninvasive neuroimaging methods lack the spatiotemporal 4UVW  WULDOV 4UVW  WULDOV HIDPSOH VHVVLRQ 0 ORDG hhcesses, producing value estimates that ultimately drive

resolution required to address this question. Thus, it is critical to adapt 1 1 behavior.

tasks which disentagle the roles of mutliple RL processes for use In

nonhuman primates (NHPS). ? /\/‘\‘J‘\#\‘/‘/‘\M/'\"K/\/“\]* g e (high value) We will simultaneously record from neuronal populations iIn
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Task Choice Task Choice HPC
state state
choose set 1 choose set 2 choose set 1 choose set 2
80% 80% 80% 80% \’
Cognitive demand biases RL strategy v R
State B State B M <« > | ‘\
To perform optimally, subjects must learn the structure of the task (MB RL) while | P
remaining sensitive to reward outcomes (MF RL). To quantfy KRZ 0% UHODWLYH WR 0) Weamto study:
e Reward e e e control evolves over the course of training ZH HYDOXDWHG WKH LQ5SXHQFH RI SUHe &K FFC in MF and MB RL computations.
prob. P(A)  prob. P(A) prob. P(B) prob. P(A) prob. P(B) trial outcomes on the likelihood of repeating a previously chosen action. _ | |
- OFC-HPC interactions during RL
T 08 /\ S 0.8 .
S } @ qg@ﬁ?’d g Hypothesis: Pure MF RL: Pure MB RL: IXQFWLRQDO GL*HUHQFHV LQ VWULDWD(
T iz _ PDLQ H*HFW RI UHZDUG reward X transition
= 0.2 = 0.2 When executive resources are _ Common
Trials Trials available, MB processes drive 2 :
©
behavior. As cognitive load 2 lower demand > COnCI USION
We trained NHPs to perform a dual task where they learned the values increases, executive resource 3 < | o |
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